Announcement:

- PTAR Process
 - http://pcos.gsfc.nasa.gov/technology/PCOS_PATR_2013.pdf
 - Input to NASA technology program
 - What are our technology capability gaps?
 - Seeking input from community
 - Just finished technical roadmap
 - http://pcos.gsfc.nasa.gov/technology/
 - Need to squeeze into PTAR form (Tuck, GM organize)
 - Additional input welcome

If you have any questions, please contact

me or Thai Pham: thai.pham@nasa.gov

L3 Scenario

Restrictions imposed by ESA

- International contribution
 - Limited to 20% of total budget (~\$350M)
 - Must not be mission critical
 - Flight equivalent must exist in Europe
 - Must bring real cost savings
 - Needs clean interfaces
 - Minimize shadow engineering required in ESA and Member States
 - Low friction losses required

L3 Scenario

Restrictions imposed by ESA

- International contribution
 - Limited to 20% of total budget (~\$350M)
 - Must not be mission critical
 - Flight equivalent must exist in Europe
 - Must bring real cost savings
 - Needs clean interfaces
 - Minimize shadow engineering required in ESA and Member States
 - Low friction losses required

The US and the Chinese Scientific community expressed strong interest to join.

China also has plans for a China-led mission to be launched 2030s

Roadmap for eLISA as ESA L3

•	eLISA Science	Theme selecte	ed as L3 in	2013
	CLIDA JCICIICE	THEITIE SELECTE	tu as Lo III	Δ(

- Technology Roadmap work
 2013 2015
- Possibly continued Mission Concept Study 2014 2015
- Successful LISA Pathfinder flight in 2015
 - Assessment of technology status
 - Possibly additional work, e.g. breadboarding of Payload + (1 to 4) years

•	Selection	of Mission	Concept in	2015 + (1 to 4)
---	-----------	------------	------------	-----------------

- Possibly Start EQM of complete Payload 2015 + (2 to 5)
- Start of Industrial Definition Study
 2015 + (2 to 5)
- Start of Industrial Implementation 2015 + (6 to 9)
 - Launch in 2015 + (15 to 18)

- NASA has expressed an interest.
- Advantages
 - Definite plan
 - Builds on strong European commitment in the past
 - Builds on long history of collaboration on LISA and LPF
 - May be compatible with NASA's willingness to invest
- Disadvantages
 - Very long range plan
 - Uncertain mission concept (as seen from NASA HQ)
 - Subject to slipping of L1, L2, L3, M3 and M4
 - Erosion of technical readiness
 - Uncertain U.S. role, weak hand in 2020 decadal

NASA-led, SGO Mid

- NASA lead has been the NRC recommendation.
- Advantages
 - Strong(er) hand in 2020 decadal
 - NASA has a history of successfully carrying out large and complex missions.
 - NASA has strong systems engineering.
- Disadvantages
 - There is no plan.
 - Requires strong performance in highly competitive 2020 decadal
 - Astrophysics may have few new missions in 2020's, after HST de-orbit, WFIRST launch in 2025, slipping and unpredictable budgets
 - Technology development would be non-standard
 - Unclear role for ESA and other potential partners

2020 Decadal Process

- The 2020 process is undefined, but planning has started.
- What happened last time over a 2+ year period
 - Pre-decadal costing
 - Science white papers: 9 responses, 70 pages total
 - RFI 1: 20 page response to questionnaire, >300 received
 - RFI 2: 92 page response to questionnaire, 22 requested
 - Written questions: 18 page response
 - Public meetings: 2 public meetings, 5 town halls, 3 workshops
 - Community outreach blitz
 - Web sites at JPL, GSFC and Europe: 6 primary documents, 9 secondary documents, 693 pages total
 - Panel interview: 2 days, 122 slides
- Science white papers in 2018, recommendations in 2020

Where to go from here?